某校团委准备举办学生绘画展览,为美化画面,在长为3 0cm、宽为20的矩形画面四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等(如图),求彩纸的宽度.
在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上. (1)小明发现,请你帮他说明理由. (2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长. (3)如图3,若小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△与△面积之和的最大值,并简要说明理由.
如图,在△ABC中,,,D为AC延长线上一点,.过点D作//,交的延长线于点H. (1)求的值; (2)若,求AB的长.
已知如图,在平面直角坐标系中,直线与轴、轴分别交于A,B两点,P是直线AB上一动点,⊙的半径为1. (1)判断原点O与⊙的位置关系,并说明理由; (2)当⊙过点B时,求⊙被轴所截得的劣弧的长; (3)当⊙与轴相切时,求出切点的坐标.
在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元. (1)求每张门票原定的票价; (2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.
如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E. (1)求证:; (2)判断AF与BD是否平行,并说明理由.