如图,在四棱锥中,底面是矩形,侧棱PD⊥底面,,是的中点,作⊥交于点.(1)证明:∥平面;(2)证明:⊥平面.
我们将具有下列性质的所有函数组成集合M:函数,对任意均满足,当且仅当时等号成立。(1)若定义在(0,+∞)上的函数∈M,试比较与大小.(2)设函数g(x)=-x2,求证:g(x)∈M.
已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=T f(x)成立.(1)函数f(x)= x是否属于集合M?说明理由;(2)设函数f(x)=ax(a>0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=ax∈M;(3)若函数f(x)=sinkx∈M ,求实数k的取值范围.
在中,若,则,用类比的方法,猜想三棱锥的类似性质,并证明你的猜想
通过观察下列等式,猜想出一个一般性的结论,并证明结论的真假。;;;
已知点,为坐标原点,且.(1)若,求与的夹角;(2)若,求tan的值.