已知圆:.(Ⅰ)直线过点,且与圆交于、两点,若,求直线的方程;(Ⅱ)过圆上一动点作平行于轴的直线,设与轴的交点为,若向量,求动点的轨迹方程,并说明此轨迹是什么曲线.
在平面直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆+y2=1有两个不同的交点P和Q.(1)求k的取值范围;(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量+与共线?如果存在,求k的值;如果不存在,请说明理由.
如图,在直角坐标系中,已知△PAB的周长为8,且点A,B的坐标分别为(-1,0),(1,0).(1)试求顶点P的轨迹C1的方程;(2)若动点C(x1,y1)在轨迹C1上,试求动点Q的轨迹C2的方程.
已知函数f(x)=ax+ln x,其中a为常数,e为自然对数的底数.(1)当a=-1时,求f(x)的最大值;(2)当a=-1时,试推断方程|f(x)|=+是否有实数解,并说明理由.
已知Sn是等比数列{an}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.(1)求数列{an}的通项公式;(2)是否存在正整数n,使得Sn≥2 013?若存在,求出符合条件的所有n的集合;若不存在,说明理由.
设y=(log2x)2+(t-2)log2x-t+1,若t在[-2,2]上变化时,y恒取正值,求x的取值范围.