已知圆:.(Ⅰ)直线过点,且与圆交于、两点,若,求直线的方程;(Ⅱ)过圆上一动点作平行于轴的直线,设与轴的交点为,若向量,求动点的轨迹方程,并说明此轨迹是什么曲线.
已知函数f(x)=ln(1+x)-.(1)求f(x)的极小值; (2)若a、b>0,求证:lna-lnb≥1-.
已知甲盒内有大小相同的1个红球和3个黑球, 乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为黑球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率;(Ⅲ)设为取出的4个球中红球的个数,求的分布列和数学期望.
已知 是定义在 上的增函数,且对任意的都满足 .(Ⅰ)求的值; (Ⅱ)若,证明;(Ⅲ)若,解不等式 .
设命题函数是上的减函数,命题函数,的值域为,若“且”为假命题,“或”为真命题,求实数的取值范围.
设椭圆C: 过点, 且离心率.(Ⅰ)求椭圆C的方程;(Ⅱ)过右焦点的动直线交椭圆于点,设椭圆的左顶点为连接且交直线于,若以MN为直径的圆恒过右焦点F,求的值