(本小题满分12分) 设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn,满足S5S6+15=0,S5="5" ; (1)求通项an及Sn;(2)设是首项为1,公比为3的等比数列.求数列{bn}的通项公式及其前n项和Tn。
已知函数的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为. (Ⅰ)求函数的解析式; (Ⅱ)求函数的单调区间.
已知倾斜角为的直线L经过抛物线的焦点F,且与抛物线相交于、两点,其中坐标原点. (1)求弦AB的长; (2)求三角形的面积.
设数列的前n项和为,点均在直线上. (1)求数列的通项公式;(2)设,试证明数列为等比数列.
将A、B两枚骰子各抛掷一次,观察向上的点数,问: (I)共有多少种不同的结果? (II)两枚骰子点数之和是3的倍数的结果有多少种? (III)两枚骰子点数之和是3的倍数的概率为多少?
圆C的圆心在y轴上,且与两直线m1:;m2:均相切. (I)求圆C的方程; (II)过抛物线上一点M,作圆C的一条切线ME,切点为E,且的最小值为4,求此抛物线准线的方程.