(本小题满分12分)已知等差数列{an}的前n项和为Sn=n2+pn+q(p,q∈R),且a2,a3,a5成等比数列(1)求p,q的值;(2)若数列{bn}满足an+log2n=log2bn,求数列{bn}的前n项和Tn.
已知数列的各项均为正数,Sn为其前n项和,对于任意,满足关系. (Ⅰ)证明:是等比数列; (Ⅱ)在正数数列中,设,求数列中的最大项.
在△ABC中,A最大,C最小,且A=2C,a+c=2b,求此三角形的三边之比.
已知方程tan2x一tan x+1=0在x[0,n)( nN*)内所有根的和记为an (1)写出an的表达式;(不要求严格的证明) (2)记Sn = a1 + a2 +…+ an求Sn; (3)设bn =(kn一5) ,若对任何nN* 都有anbn,求实数k的取值范围.
已知数列的前n项和(n为正整数)。 (Ⅰ)令,求证数列是等差数列,并求数列的通项公式; (Ⅱ)令,试比较与的大小,并予以证明。
已知椭圆的离心率为,焦点到相应准线的距离为 (1)求椭圆C的方程 (2)设直线与椭圆C交于A、B两点,坐标原点到直线的距离为,求面积的最大值。