已知数列的前n项和(n为正整数)。(Ⅰ)令,求证数列是等差数列,并求数列的通项公式;(Ⅱ)令,试比较与的大小,并予以证明。
已知双曲线的一个焦点为,一条渐近线方程为,其中是以4为首项的正数数列. (Ⅰ)求数列的通项公式; (Ⅱ)若不等式对一切正常整数恒成立,求实数的取值范围.
在如图的多面体中,平面AEB, (Ⅰ)求证:AB//平面DEG; (Ⅱ)求二面角的余弦值.
口袋中装着标有数字1,2,3,4的小球各2个,从口袋中任取3个小球,按3个小球上最大数字的8倍计分,每个小球被取出的可能性相等,用表示取出的3个小球上的最大数字,求: (Ⅰ)取出的3个小球上的数字互不相同的概率; (Ⅱ)随机变量的概率分布和数学期望; (Ⅲ)计分介于17分到35分之间的概率.
已知向量,若. (Ⅰ)求函数的单调递增区间; (Ⅱ)已知的三内角A、B、C的对边分别为,且,(A为锐角),,求A、的值.
(本小题满分10分)选修4-5:不等式选讲 已知函数. (1)当时,求函数的定义域; (2)若关于的不等式的解集是,求的取值范围.