已知数列的各项均为正数,Sn为其前n项和,对于任意,满足关系. (Ⅰ)证明:是等比数列;(Ⅱ)在正数数列中,设,求数列中的最大项.
已知函数。(1)求函数在区间上的值域;(2)是否存在实数a,对任意给定的,在区间上都存在两个不同的,使得成立.若存在,求出a的取值范围;若不存在,请说明理由.
在数列中,,且前n项的算术平均数等于第n项的倍().(1)写出此数列的前5项;(2)归纳猜想的通项公式,并用数学归纳法证明.
将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落,小球在下落过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中。已知小球每次遇到黑色障碍物时向左、右两边下落的概率都是.(1)求小球落入A袋中的概率P(A);(2)在容器入口处依次放入4个小球,记X为落入A袋中小球的个数,试求X=3的概率和X的数学期望EX.
已知是二次函数,方程有两个相等的实数根,且。(1)求的表达式;(2)若直线把的图象与两坐标轴围成的图形面积二等分,求t的值.
已知展开式的二项式系数和为512,且.求的值; (2)求的值.