已知函数(其中是常数).(1)若当时,恒有成立,求实数的取值范围;(2)若存在,使成立,求实数的取值范围;
甲、乙两名篮球运动员,各自的投篮命中率分别为与,如果每人投篮两次. (Ⅰ)求甲比乙少投进一次的概率; (Ⅱ)若投进一个球得分,未投进得分,求两人得分之和的分布列及数学期望.
在中,已知,. (Ⅰ)求和角的值; (Ⅱ)若角,,的对边分别为,,,且,求,的值.
已知直线的参数方程为:(为参数),曲线的极坐标方程为:. (1)以极点为原点,极轴为轴正半轴,建立直角坐标系,求曲线的直角坐标方程; (2)若直线被曲线截得的弦长为,求的值.
设函数(),. (1)若函数在定义域内单调递减,求实数的取值范围; (2)若对任意,都有唯一的,使得成立,求实数的取值范围.
已知直线,半径为的圆与相切,圆心在轴上且在直线的右上方. (1)求圆的方程; (2)过点的直线与圆交于,两点(在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.