(本小题满分13分)设数列的前项和为,若对任意的正整数,总存在正整数,使得,则称是“数列”。(1)若数列的前项和为,证明:是“数列”;(2)设是等差数列,其首项,公差,若是“数列”,求的值;(3)证明:对任意的等差数列,总存在两个“数列”,使得成立。
在△ABC中,内角所对的边分别为,已知. (1)求证:成等比数列; (2)若,求△的面积S.
设函数f(x)定义在(0,+∞)上,f(1)=0,导函数,. (1)求的单调区间和最小值; (2)讨论与的大小关系; (3)是否存在x0>0,使得|g(x)﹣g(x0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.
乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球. (1)求开始第4次发球时,甲、乙的比分为1比2的概率; (2)表示开始第4次发球时乙的得分,求的期望.
如图1,,,过动点A作,垂足D在线段BC上且异于点B,连接AB,沿将△折起,使(如图2所示). (1)当的长为多少时,三棱锥的体积最大; (2)当三棱锥的体积最大时,设点,分别为棱,的中点,试在棱上确定一点,使得,并求与平面所成角的大小.
设等差数列{}的前n项和为Sn,且S4=4S2,. (1)求数列{}的通项公式; (2)设数列{}满足,求{}的前n项和Tn; (3)是否存在实数K,使得Tn恒成立.若有,求出K的最大值,若没有,说明理由.