(本小题满分12分)有三种产品,合格率分别为0.90,0.95和0.95,各抽取一件进行检验.(1)求恰有一件不合格的概率;(2)求至少有两件不合格的概率.(精确到0.001)
设正数数列的前项和为,且, (Ⅰ)试求,, (Ⅱ)猜想的通项公式,并用数学归纳法证明
已知抛物线和若有且仅有一条公切线,求出公切线的方程
定义在R上的函数满足对任意实数,总有,且当时,. (1)试求的值; (2)判断的单调性并证明你的结论; (3)设,若,试确定的取值范围.
如图,为多面体,平面与平面垂直,点在线段上,,,△OAB,△OAC,△ODE,△ODF都是正三角形。 (Ⅰ)证明直线; (Ⅱ)求棱锥的体积.
将一枚骰子先后抛掷两次,观察向上的点数, (1)求点数之和是5的概率; (2)设a,b分别是将一枚骰子先后抛掷两次向上的点数,求等式成立的概率。