(本小题满分12分)设函数,的图象的一条对称轴是直线.(1)求;(2)求函数的单调增区间;(3)画出函数在区间[0,]上的图象.
(本小题满分13分)如图所示的茎叶图记录了甲、乙两组各四名同学的投篮命中次数, 乙组记录中有一个数据模糊,无法确认, 在图中以表示.(Ⅰ)如果乙组同学投篮命中次数的平均数为, 求及乙组同学投篮命中次数的方差; (Ⅱ)在(Ⅰ)的条件下, 分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名, 记事件A:“两名同学的投篮命中次数之和为17”, 求事件A发生的概率.
(本小题满分12分)下图是调查某地某公司1000名员工的月收入后制作的直方图.根据直方图估计:(Ⅰ)该公司月收入在1000元到1500元之间的人数; (Ⅱ)该公司员工的月平均收入; (Ⅲ)该公司员工收入的众数; (Ⅳ)该公司员工月收入的中位数;
已知椭圆=1(a>b>0)的离心率e=,过点A(0,-b)和B(a,0)的直线与坐标原点距离为.(1)求椭圆的方程;(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆相交于C、D两点,试判断是否存在k值,使以CD为直径的圆过定点E?若存在求出这个k值,若不存在说明理由.
若点,在中按均匀分布出现. (1)点横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点落在上述区域的概率?(2)试求方程有两个实数根的概率.
已知方程,设分别是先后抛掷一枚骰子得到的点数. 求方程有实根的概率;