设函数,(Ⅰ)求函数的最小正周期,并求在区间上的最小值;(Ⅱ)在中,分别是角的对边,为锐角,若,,的面积为,求.
本小题满分14分)如图,在直三棱柱中,,,,点、分别是、的中点. (Ⅰ)求证:平面; (Ⅱ)证明:平面平面;(Ⅲ)求多面体A1B1C1BD的体积V.
(本小题满分12分)已知圆C的圆心在直线y=2x上,且与直线l:x+y+1=0相切于点P(-1,0).(Ⅰ)求圆C的方程;(Ⅱ)若A(1,0),点B是圆C上的动点,求线段AB中点M的轨迹方程,并说明表示什么曲线.
(本小题满分12分)已知平面直角坐标系中,,,,.(Ⅰ)求的最小正周期和对称中心;(Ⅱ)求在区间上的单调递增区间.
(本小题满分14分)在数列中,是数列前项和,,当(I)求证:数列是等差数列;(II)设求数列的前项和;(III)是否存在自然数,使得对任意自然数,都有成立?若存在,求出的最大值;若不存在,请说明理由.
(本小题满分14分)已知 ,(Ⅰ)若,求实数的值;(Ⅱ)若是的充分条件,求实数的取值范围.