设函数,(Ⅰ)求函数的最小正周期,并求在区间上的最小值;(Ⅱ)在中,分别是角的对边,为锐角,若,,的面积为,求.
设有函数和,若它们的最小正周期的和为,且,,和的解析式。
已知,,当为何值时,(1) 与垂直?(2) 与平行?平行时它们是同向还是反向?
化简:(1).(2)
设函数其中(1)若=0,求的单调区间;(2)设表示与两个数中的最大值,求证:当0≤x≤1时,||≤.
已知椭圆的左右焦点为,抛物线C:以F2为焦点且与椭圆相交于点、,点在轴上方,直线与抛物线相切.(1)求抛物线的方程和点、的坐标;(2)设A,B是抛物线C上两动点,如果直线,与轴分别交于点. 是以,为腰的等腰三角形,探究直线AB的斜率是否为定值?若是求出这个定值,若不是说明理由.