((本小题满分12分)如图,已知四棱锥P—ABCD的底面是直角梯形,∠ABC=∠BCD=90o,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.(1)求证:PA⊥BD;(2)求二面角P—DC—B的大小.
已知函数. (Ⅰ)求函数的极小值; (Ⅱ)过点能否存在曲线的切线,请说明理由.
已知椭圆C:的离心率为,且C上任意一点到两个焦点的距离之和都为4. (Ⅰ)求椭圆C的方程; (Ⅱ)设直线与椭圆交于P、Q,O为坐标原点,若,求证为定值.
有20名学生参加某次考试,成绩(单位:分)的频率分布直方图如图所示: (Ⅰ)求频率分布直方图中的值; (Ⅱ)分别求出成绩落在中的学生人数; (Ⅲ)从成绩在的学生中任选2人,求所选学生的成绩都落在中的概率.
如图,在底面为平行四边形的四棱锥中,,平面,且,点是的中点. (Ⅰ)求证:平面; (Ⅱ)若,求点到平面的距离.
在中,内角对边分别为,且. (Ⅰ)求角的大小; (Ⅱ)若,求的值.