已知函数.(Ⅰ)若,求函数的零点;(Ⅱ)若关于的方程在上有2个不同的解,求的取值范围,并证明:.
在直角坐标系中,曲线C的参数方程为(为参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,点,直线l的极坐标方程为. (1)判断点P与直线l的位置关系,说明理由; (2)设直线l与曲线C的两个交点为A、B,求的值.
已知为半圆的直径,,为半圆上一点,过点作半圆的切线,过点作于,交圆于点,. (Ⅰ)求证:平分; (Ⅱ)求的长.
已知函数(其中). (Ⅰ)若为的极值点,求的值; (Ⅱ)在(Ⅰ)的条件下,解不等式; (Ⅲ)若函数在区间上单调递增,求实数的取值范围.
已知椭圆C的左、右焦点分别为,椭圆的离心率为,且椭圆经过点. (1)求椭圆C的标准方程; (2)线段是椭圆过点的弦,且,求内切圆面积最大时实数的值.
直四棱柱中,底面为菱形,且为延长线上的一点,面.设. (Ⅰ)求二面角的大小; (Ⅱ)在上是否存在一点,使面?若存在,求的值;不存在,说明理由.