为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及的表达式;(2)隔热层修建多厚时,总费用达到最小,并求最小值.
设V为全体平面向量构成的集合,若映射f:V→R满足: 对任意向量a=(x1,y1)∈V,b=(x2,y2)∈V,以及任意λ∈R,均有f[λa+(1-λ)b]=λf(a)+(1-λ)f(b),则称映射f具有性质p. 现给出如下映射: ①f1:V→R,f1(m)=x-y,m=(x,y)∈V; ②f2:V→R,f2(m)=x2+y,m=(x,y)∈V; ③f3:V→R,f3(m)=x+y+1,m=(x,y)∈V. 分析映射①②③是否具有性质p.
如图,在三棱锥S-ABC中,SA⊥SB,SB⊥SC,SA⊥SC,且SA、SB、SC和底面ABC,所成的角分别为α1、α2、α3,三侧面SBC,SAC,SAB的面积分别为S1,S2,S3,类比三角形中的正弦定理,给出空间情形的一个猜想.
在数列{an}中,a1=1,an+1=,n∈N+,求a2,a3,a4 并猜想数列的通项公式,并给出证明.
观察以下等式: sin230°+cos260°+sin 30°·cos 60°=, sin240°+cos270°+sin 40°·cos 70°=, sin215°+cos245°+sin 15°·cos 45°=. … 写出反映一般规律的等式,并给予证明.
设Sn=+…+,写出S1,S2,S3,S4的值,归纳并猜想出结果,并给出证明.