已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴, 建立平面直角坐标系,直线的参数方程是:(是参数).(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,将直线的参数方程化为普通方程;(Ⅱ)若直线与曲线C相交于A、B两点,且,试求实数m值.
(本小题满分12分)己知函数. (1)讨论函数的单调区间; (2)设,当时,若对任意的都有,求实数的取值范围; (3)求证:.
(本小题满分12分).已知椭圆经过点,离心率. (1)求椭圆的方程; (2)不过原点的直线与椭圆交于两点,若的中点在抛物线上,求直线的斜率的取值范围.
(本小题满分12分)数列的前几项和为,满足,其中 (1)若为常数,证明:数列为等比数列; (2)若为变量,记数列的公比为,数列满足,求,试判定与的大小,并加以证明.
(本小题满分12分)营养学家指出,高中学生良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪.1kg食物含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费元;而1kg食物含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费元.为了满足营养专家指出的 日常饮食要求,同时使花费最低,需要同时食用食物和食物多少kg?
(本小题满分12分)已知函数. (1)求函数的最小正周期和单调递减区间; (2)记的内角的对应边分别为,且,,求的取值范围.