(本小题满分12分).已知椭圆经过点,离心率.(1)求椭圆的方程;(2)不过原点的直线与椭圆交于两点,若的中点在抛物线上,求直线的斜率的取值范围.
设直线l过点P(-3,3),且倾斜角为.(1)写出直线l的参数方程; (2)设此直线与曲线C: (θ为参数)交于A,B两点,求|PA|·|PB|.
在平面直角坐标系xOy中,直线l的参数方程为 (t为参数),曲线C的参数方程为 (θ为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐
已知在直角坐标系xOy中,曲线C的参数方程为 (θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为ρsin =2.(1)求曲线C在极坐标系中的方程;(2)求直线l被曲线C截得的弦长.
在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为,直线l的极坐标方程为ρcos=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程; (2)圆C的参数方程为 (α为参数),试判断直线l与圆C的位置关系.
在极坐标系中,已知圆C经过点P,圆心为直线ρsin=-与极轴的交点,求圆C的极坐标方程.