已知等差数列{an}的首项a1=1,公差d>0,且a2,a5,a14分别是等比数列{bn}的b2,b3,b4.(Ⅰ)求数列{an}与{bn}的通项公式;(Ⅱ)设数列{cn}对任意自然数n均有=an+1成立,求c1+c2+…+c2014的值.
已知函数. (1)求的最小正周期和单调增区间; (2)设,求的值域.
如图,以Ox为始边作角α与β() ,它们终边分别单位圆相交于点P、Q,已知点P的坐标为(,). (1)求的值; (2)若·,求.
在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且. (1)确定角C的大小: (2)若c=,且△ABC的面积为,求a+b的值.
已知;求的值.
用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用一个单位的水可洗掉蔬菜上残留农药的,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数. ⑴试规定的值,并解释其实际意义; ⑵试根据假定写出函数应满足的条件和具有的性质; ⑶设,现有单位量的水,可以清洗一次,也可以把水平均分成两份后清洗两次.试问用那种方案清洗后蔬菜上残留的农药量比较少?说明理由.