(本小题满分14分)据气象中心的观察和预测:发生于地的沙尘暴一直向正南方向移动,其移动速度与时间的函数图像如图所示,过线段上一点作横轴的垂线,则梯形在直线左侧部分的面积即为内沙尘暴所经过的路程.(1)当时,求的值;(2)将随变化的规律用数学关系式表示出来;(3)若城位于地正南方向,且距地为,试判断这场沙尘暴是否会侵袭到城.如果会,在沙尘暴发生多长时间后它将侵袭到城;如果不会,请说明理由.
.(本题12分)为了调查某厂2000名工人生产某种产品的能力,随机抽查了位工人某天生产该产品的数量,产品数量的分组区间为,,,,,频率分布直方图如图所示.已知生产的产品数量在之间的工人有6位.(Ⅰ)求;(Ⅱ)工厂规定从生产低于20件产品的工人中随机的选取2位工人进行培训,则这2位工人不在同一组的概率是多少?
(本题12分)在中,(Ⅰ)求AB的值;(Ⅱ)求的值.
(本小题满分14分)已知数列的前项和为,点在直线 上;数列满足,且,它的前9项和为153.(1)求数列、的通项公式;(2)设,数列的前项和为,求使不等式对一切都成立的最大正整数的值;(3)设,是否存在,使得成立?若存在,求出的值;若不存在,请说明理由.
(本小题满分14分)设上的两点,满足,椭圆的离心率短轴长为2,0为坐标原点.(1)求椭圆的方程;(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
(本小题满分14分)已知如图(1),梯形中,,,,、分别是、上的动点,且,设()。沿将梯形翻折,使平面平面,如图(2)。(Ⅰ)求证:平面平面;(Ⅱ)若以、、、为顶点的三棱锥的体积记为,求的最大值;(Ⅲ)当取得最大值时,求二面角的正弦值.