已知函数(为无理数,)(1)求函数在点处的切线方程;(2)设实数,求函数在上的最小值;(3)若为正整数,且对任意恒成立,求的最大值.
已知椭圆C的焦点分别为和,长轴长为6,设直线交椭圆C于A、B两点,求线段AB的中点坐标.
已知命题:“不等式对任意恒成立”,命题:“方程表示焦点在x轴上的椭圆”,若为真命题,为真,求实数的取值范围.
已知双曲线的两条渐近线与抛物线的准线分别交于A, B两点, O为坐标原点.若双曲线的离心率为2,△AOB的面积为.(1)求抛物线的方程;(2)过点的直线与抛物线交于不同的两点,若在轴上存在一点使得是等边三角形,求的值.
若函数f(x)=ax2+2x-ln x在x=1处取得极值.(1)求a的值;(2)求函数f(x)的单调区间及极值.
在平面直角坐标系中,已知圆:和点,过点的直线交圆于两点.(1)若,求直线的方程;(2)设弦的中点为,求点的轨迹方程.