已知双曲线的两条渐近线与抛物线的准线分别交于A, B两点, O为坐标原点.若双曲线的离心率为2,△AOB的面积为.(1)求抛物线的方程;(2)过点的直线与抛物线交于不同的两点,若在轴上存在一点使得是等边三角形,求的值.
已知二次函数为整数)且关于的方程在区间内有两个不同的实根,(1)求整数的值;(2)若时,总有,求的最大值。
已知函数, 若数列(n∈N*)满足:,(1) 证明数列为等差数列,并求数列的通项公式;(2) 设数列满足:,求数列的前n项的和.
已知向量,设函数其中xÎR. (1)求函数的最小正周期和单调递增区间. (2)将函数的图象的纵坐标保持不变,横坐标扩大到原来的两倍,然后再向右平移个单位得到的图象,求的解析式.
(1)解不等式;(2)已知, 且, 求的最小值;
已知二次函数为整数)且关于的方程在区间内有两个不同的实根,(1)求整数的值;(2)若对一切,不等式恒成立,求实数的取值范围。