若函数f(x)=ax2+2x-ln x在x=1处取得极值.(1)求a的值;(2)求函数f(x)的单调区间及极值.
设是椭圆的两点,,,且,椭圆离心率,短轴长为2,O为坐标原点。 (1)求椭圆方程; (2)若存在斜率为的直线AB过椭圆的焦点(为半焦距),求的值;(3)试问的面积是否为定值?若是,求出该定值;若不是,说明理由。
已知:函数(其中常数).(Ⅰ)求函数的单调区间;(Ⅱ)若存在实数,使得不等式成立,求a的取值范围.
已知不等式|1-kxy|>|kx-y|.(1)当k=1,y=2时,解关于x的不等式|1-kxy|>|kx-y|;(2)若不等式|1-kxy|>|kx-y|对任意满足|x|<1,|y|<1的实数x,y恒成立,求实数k的取值范围
已知数列{an}的前n项和为Sn,且an=(3n+Sn) 对一切正整数n成立(I)求出数列{an}的通项公式;(II)设,求数列的前n项和Bn;
已知△ABC的三个内角A、B、C所对的边分别为a、b、c,向量m=(1,1-sinA),n=(cosA,1),且m^ n.(Ⅰ)求角A;(Ⅱ)若b+c=a,求sin(B+)的值.