已知关于的一元二次方程,其中、、分别为△ABC三边的长.(1)如果是方程的根,试判断△ABC的形状,并说明理由:(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.
如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB. (1)求证:PC是⊙O的切线; (2)求∠P的度数; (3)点M是弧AB的中点,CM交AB于点N,AB=4,求线段BM、CM及弧BC所围成的图形面积.
学校240名师生集体外出活动,准备租用45座大客车或30座小客车,共租用6辆. 据调查:租用1辆大车和2辆小车共需租车费1000元;租用2辆大车1辆小车共需租车费1100元. (1)求大、小车每辆的租车费各是多少元? (2)若总租车费用不超过2300元,求最省钱的租车方案.
在Rt△POQ中,OP=OQ=4,M是PQ的中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B. (1)求证:MA=MB; (2)连接AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
下列图表是某校今年参加中考体育的男生1000米跑、女生800米跑的成绩中分别抽取的10个数据.
(1)求出这10名女生成绩的中位数、众数和极差; (2)按规定,男生1000米跑成绩不超过3′35〞就可以得满分.该校学生有490人,男生比女生少70人. 请你根据上面抽样的结果,估算该校考生中有多少名男生该项考试得满分?
如图,在平面直角坐标系中,等边中,BC∥轴,且BC=,顶点A在抛物线上运动. (1)当顶点A运动至与原点重合时,顶点C是否在该抛物线上? (2)在运动过程中有可能被轴分成两部分,当上下两部分的面积之比为1:8(即)时,求顶点A的坐标; (3)在运动过程中,当顶点B落在坐标轴上时,直接写出顶点C的坐标.