(本小题满分12分)如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.
已知各项均为正数的等差数列的公差为d,其前n项和为,且成等比数列.(1)求公差d和; (2)令, 求数列的前n项和.
一袋中装有5个球,编号分别为1,2,3,4,5;设编号为n的球重量为; 这些球等可能地从袋中取出。(1)任取1球,试求其重量大于编号的概率;(2)不放回先后逐一取出2球,求他们质量相等的概率。
已知函数(1)求的最小正周期;(2)当时,求的单调递增区间。
(1)计算+(2)已知,求
(本小题满分14分)已知函数满足,当时;当时.(Ⅰ)求函数在(-1,1)上的单调区间;(Ⅱ)若,求函数在上的零点个数.