已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切,过点P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点.(1)求椭圆C的方程;(2)求·的取值范围;(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.
如图所示的几何体中,面为正方形,面为等腰梯形,,,,且平面平面. (1)求与平面所成角的正弦值; (2)线段上是否存在点,使平面平面? 证明你的结论.
在直角坐标系中,曲线的参数方程为(为参数),若以直角坐标系的点为极点,轴正方向为极轴,且长度单位相同,建立极坐标系,得直线的极坐标方程为.求直线与曲线交点的极坐标.
已知矩阵,点,.求线段在矩阵对应的变换作用下得到线段的长度.
已知函数,,其中m∈R. (1)若0<m≤2,试判断函数f (x)=f1 (x)+f2 (x)的单调性,并证明你的结论; (2)设函数若对任意大于等于2的实数x1,总存在唯一的小于2的实数x2,使得g (x1) =" g" (x2) 成立,试确定实数m的取值范围.
已知数列,满足,,,数列的前项和为,. (1)求数列的通项公式; (2)求证:; (3)求证:当时,.