(本小题12分)如图,已知直角梯形中,且,又分别为的中点,将△沿折叠,使得.(Ⅰ)求证:AE⊥平面CDE;(Ⅱ)求证:FG∥平面BCD;(Ⅲ)在线段AE上找一点R,使得平面BDR⊥平面DCB, 并说明理由.
对任意的实数λ,直线(2+λ)x-(1+λ)y-2(3+2λ)=0与点P(-2,2)的距离为d,求d的取值范围
已知直线l:kx-y+1+2k=0
(1)证明:l经过定点;(2)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S,求S的最小值并求此时直线l的方程;(3)若直线不经过第三象限,求k的取值范围.
已知向量a=(sin θ,-2)与b=(1,cos θ)互相垂直,其中θ∈(1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=3cos φ,0<φ<,求cos φ的值.
在△ABC,已知2·=||·||=3BC2,求角A、B、C的大小