已知向量a=(sin θ,-2)与b=(1,cos θ)互相垂直,其中θ∈(1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=3cos φ,0<φ<,求cos φ的值.
已知,(Ⅰ) 求的最大值及此时的值;(Ⅱ) 求在定义域上的单调递增区间。
已知函数图像上点处的切线与直线平行(其中), (I)求函数的解析式;(II)求函数上的最小值;(III)对一切恒成立,求实数t的取值范围。
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式,其中3<x<6,a为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。(I)求a的值;(II)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大。
在△ABC中,a,b,c分别为角A,B,C的对边,设 f(x)=a2x2-(a2-b2)x-4c2.(1)若 f(1)=0,且B-C=,求角C; (2)若 f(2)=0,求角C的取值范围.
如图,设是单位圆和轴正半轴的交点,是单位圆上的两点,是坐标原点,,. (1)若,求的值;(2)设函数,求的值域.