已知椭圆C:+=1(a>b>0),左、右两个焦点分别为F1,F2,上顶点A(0,b),△AF1F2为正三角形且周长为6.(1)求椭圆C的标准方程及离心率;(2)O为坐标原点,P是直线F1A上的一个动点,求|PF2|+|PO|的最小值,并求出此时点P的坐标.
已知三角形三个顶点是,,,(1)求边上的中线所在直线方程;(2)求边上的高所在直线方程.
已知定点,,动点到定点距离与到定点的距离的比值是.(Ⅰ)求动点的轨迹方程,并说明方程表示的曲线;(Ⅱ)当时,记动点的轨迹为曲线.①若是圆上任意一点,过作曲线的切线,切点是,求的取值范围;②已知,是曲线上不同的两点,对于定点,有.试问无论,两点的位置怎样,直线能恒和一个定圆相切吗?若能,求出这个定圆的方程;若不能,请说明理由.
已知数列中,(Ⅰ)求数列的通项;(Ⅱ)求数列的前项和;(Ⅲ)若存在,使得成立,求实数的最小值.
已知定义在上的函数(其中).(Ⅰ)解关于的不等式;(Ⅱ)若不等式对任意恒成立,求的取值范围.
在中,内角、、的对边分别为、、,已知、、成等比数列,且.(Ⅰ)求的值;(Ⅱ)设,求、的值.