(本小题满分12分)如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.
数列的前项和记为, (Ⅰ)求的通项公式; (Ⅱ)等差数列的各项为正,其前项和为,且,又成等比数列,求.
设函数其中 (Ⅰ)求的单调区间; (Ⅱ) 讨论的极值.
如右图,简单组合体ABCDPE,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC. (1)若N为线段PB的中点,求证:EN⊥平面PDB; (2)若=,求平面PBE与平面ABCD所成的锐二面角的大小.
设△ABC的内角A,B,C所对的边长分别为a,b,c,m=(cosA,cosC),n=(c-2b,a)且m⊥n. (1)求角A的大小; (2)若角B=,BC边上的中线AM的长为,求△ABC的面积.
已知函数f(x)=-x3+3x2+9x+m (I)求f(x)的单调递减区间; (II)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.