(本小题满分12分)某校从参加高二级期中考试的学生中抽出60名学生,将其成绩(均为整数)分成六段,,…,.后画出如下部分频率分布直方图.观察图形的信息,回答下列题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分以上为及格);若统计方法中,同一组数据用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)从成绩是分的学生中选两人,求他们在同一分数段的概率.
已知函数,为常数,,且是方程的解。 (1)求函数的最小正周期; (2)当时,求函数值域。
在直角坐标系中,A (3,0),B(0,3),C (1)若^,求的值; (2)与能否共线?说明理由。
已知函数f (x)=lnx,g(x)=ex. (I)若函数φ (x) = f (x)-,求函数φ (x)的单调区间; (Ⅱ)设直线l为函数的图象上一点A(x0,f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.
张先生家住H小区,他在C科技园区工作,从家开车到公司上班有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为,. (Ⅰ)若走L1路线,求最多遇到1次红灯的概率; (Ⅱ)若走L2路线,求遇到红灯次数的数学期望; (Ⅲ)按照“平均遇到红灯次数最少”的要求,请你 帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.
最近,某人准备将手中的10万块钱投资理财,现有二种方案:第一种方案:将10万块钱全部用来买股票,据分析预测:投资股市一年可能获利40%,也可能亏损20%(只有这两种可能),且获利的概率为.第二种方案:将10万块钱全部用来买基金,据分析预测:投资基金一年可能获利20%,也可能损失10%,也可能不赔不赚,且三种情况发生的概率分别为.针对以上两种投资方案,请你为选择一种合理的理财方法,并说明理由.