(本小题满分13分)如图是学校从走读生中随机调查200名走读生早上上学所需时间(单位:分钟)样本的频率分布直方图.(1)学校所有走读生早上上学所需要的平均时间约是多少分钟?(2)根据调查,距离学校500米以内的走读生上学时间不超过10分钟,距离学校1000米以内的走读生上学时间不超过20分钟.那么,距离学校500米以内的走读生和距离学校1000米以上的走读生所占全校走读生的百分率各是多少?
(本小题满分12分)在中,所对的边分别,,. (1)求; (2)若,求.
(本小题满分14分)在中,的坐标分别是,点是的重心,轴上一点满足,且. (1)求的顶点的轨迹的方程; (2)直线与轨迹相交于两点,若在轨迹上存在点,使四边形为平行四边形(其中为坐标原点),求的取值范围.
(本小题满分13分)已知函数. (1)当时,求曲线在处的切线方程; (2)设函数,求函数的单调区间; (3)若,在上存在一点,使得成立,求的取值范围.
(本小题满分12分)如图,在中,已知在上,且又平面. (1)求证:⊥平面; (2)求二面角的余弦值.
(本小题满分12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立. (1)求甲在局以内(含局)赢得比赛的概率; (2)记为比赛决出胜负时的总局数,求的分布列和期望.