如图,已知在侧棱垂直于底面三棱柱中,,点是的中点。(1)求证:(2)求证: (3)求三棱锥 的体积。
(理科)已知动圆C与圆相外切,与圆相内切,设动圆圆心C的轨迹为T,且轨迹T与x轴右半轴的交点为A.(Ⅰ)求轨迹T的方程;(Ⅱ)已知直线l:y=kx+m与轨迹为T相交于M、N两点(M、N不在x轴上).若以MN为直径的圆过点A,求证:直线l过定点,并求出该定点的坐标.
(文科)在平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,且过点(3,﹣1).(1)求椭圆C的方程;(2)若动点P在直线l:x=﹣2上,过P作直线交椭圆C于M,N两点,使得PA=PN,再过P作直线l′⊥MN,证明:直线l′恒过定点,并求出该定点的坐标.
(理科)椭圆C:(a>b>0)的左、右焦点分别是F1、F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为l.(Ⅰ)求椭圆C的方程;(Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1、PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点p作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明为定值,并求出这个定值.
(文科)已知椭圆:离心率为,且椭圆的长轴比焦距长.(1)求椭圆的方程;(2)过点(,)的动直线交椭圆于、两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过定点?若存在,求出点的坐标;若不存在,请说明理由.
(文科)已知点是椭圆的左顶点,直线与椭圆相交于两点,与轴相交于点.且当时,△的面积为.(Ⅰ)求椭圆的方程;(Ⅱ)设直线,与直线分别交于,两点,试判断以为直径的圆是否经过点?并请说明理由.