如图,已知在侧棱垂直于底面三棱柱中,,点是的中点。(1)求证:(2)求证: (3)求三棱锥 的体积。
下表是某市从3月份中随机抽取的天空气质量指数()和“”(直径小于等于微米的颗粒物)小时平均浓度的数据,空气质量指数()小于表示空气质量优良.
(1)根据上表数据,估计该市当月某日空气质量优良的概率; (2)在上表数据中,在表示空气质量优良的日期中,随机抽取两个对其当天的数据作进一步的分析,设事件为“抽取的两个日期中,当天‘’的小时平均浓度不超过”,求事件发生的概率; (3)在上表数据中,在表示空气质量优良的日期中,随机抽取天,记为“”小时平均浓度不超过的天数,求的分布列和数学期望.
在中,已知,且. (1)求角和的值; (2)若的边,求边的长.
已知函数(). (1)若,求函数的极值; (2)设. ① 当时,对任意,都有成立,求的最大值; ② 设的导函数.若存在,使成立,求的取值范围.
已知焦点在y轴,顶点在原点的抛物线C1经过点P(2,2),以C1上一点C2为圆心的圆过定点A(0,1),记为圆与轴的两个交点. (1)求抛物线的方程; (2)当圆心在抛物线上运动时,试判断是否为一定值?请证明你的结论; (3)当圆心在抛物线上运动时,记,,求的最大值.
已知正△ABC的边长为, CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B,如图所示. (1)试判断折叠后直线AB与平面DEF的位置关系,并说明理由; (2)若棱锥E-DFC的体积为,求的值; (3)在线段AC上是否存在一点P,使BP⊥DF?如果存在,求出的值;如果不存在,请说明理由.