(本小题满分12分)在某次足球比赛中,甲、乙、丙三队进行单循环赛(即每两队比赛一场),共赛三场,每场比赛胜者得1分,输者得0分,没有平局;在每一场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为.(Ⅰ)求甲获得小组第一且丙获得小组第二的概率;(Ⅱ)求三队得分相同的概率;(Ⅲ)求甲不是小组第一的概率.
在中,已知,,. (1)求的值;(2)求的值.
.围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:m),修建围墙的总费用为y (单位:元). (1)将y表示为x的函数; (2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
如图,在三棱锥中,分别为的中点. (1)求证:平面; (2)若平面平面,且,, 求证:平面平面.
已知, (1)当时,解不等式;(2)若,解关于x的不等式.
(本题12分)在平面直角坐标系中,已知椭圆的离心率为,其焦点在圆上. ⑴求椭圆的方程; ⑵设、、是椭圆上的三点(异于椭圆顶点),且存在锐角,使. ①试求直线与的斜率的乘积; ②试求的值.