(本小题满分12分)下图是调查某地某公司1000名员工的月收入后制作的直方图.(1)求该公司员工的月平均收入及员工月收入的中位数; (2)在收入为1000至1500元和收入为3500至4000元的员工中用分层抽样的方法抽取一个容量15的样本, 员工甲、乙的月收入分别为1200元、3800元, 求甲乙同时被抽到的概率.
已知函数f(x)=x3-3ax2+2bx在点x=1处有极小值-1.(1)求a、b;(2)求f(x)的单调区间.
求定积分x2dx的值.
有一质量非均匀分布的细棒,已知其线密度为ρ(x)=2x(取细棒所在直线为x轴,细棒的一端为原点),棒长为l,试用定积分表示细棒的质量m,并求出m的值.
根据定积分的几何意义推出下列积分的值.(1) xdx; (2)cos xdx.
设力F作用在质点m上使m沿x轴从x=1运动到x=10,已知F=x2+1且力的方向和x轴的正向相同,求F对质点m所作的功.