设为关于n的k次多项式.数列{an}的首项,前n项和为.对于任意的正整数n,都成立.(1)若,求证:数列{an}是等比数列;(2)试确定所有的自然数k,使得数列{an}能成等差数列
在斜三棱柱中,平面平面ABC,,,. (1)求证:; (2)若,求三棱锥的体积.
如图,正三角形ABC的边长为2,D,E,F分别在三边AB,BC和CA上,且D为AB的中点,,,. (1)当时,求的大小; (2)求的面积S的最小值及使得S取最小值时的值.
设不等式的解集为M,. (1)证明:; (2)比较与的大小,并说明理由.
已知曲线的直角坐标方程为. 以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系. P是曲线上一点,,,将点P绕点O逆时针旋转角后得到点Q,,点M的轨迹是曲线. (1)求曲线的极坐标方程; (2)求的取值范围.
如图,四边形ABCD内接于圆,BD是圆的直径,于点E,DA平分. (1)证明:AE是圆的切线; (2)如果,,求CD.