如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线y=(x>0)交于D点,过点D作DC⊥x轴,垂足为G,连接OD.已知△AOB≌△ACD.(1)如果b=﹣2,求k的值;(2)试探究k与b的数量关系,并写出直线OD的解析式.
(本小题满分5分)已知:如图,在△ABC中,∠ACB=90°点D是AB的中点,延长BC到点F, 延长CB到点E,使CF=BE,联结DE、DC、DF. 求证:DE=DF.
(本小题满分5分)解不等式,并把它的解集在数轴上表示出来.
(本小题满分5分)计算:.
如图1,在平面直角坐标系中,等腰直角三角形OMN的斜边ON在x轴上,顶点M的坐标为(3,3),MH为斜边上的高.抛物线C:与直线及过N点垂直于x轴的直线交于点D.点P(m,0)是x轴上一动点,过点P作y轴的平行线,交射线OM与点E.设以M、E、H、N为顶点的四边形的面积为S.(1)直接写出点D的坐标及n的值;(2)判断抛物线C的顶点是否在直线OM上?并说明理由;(3)当m≠3时,求S与m的函数关系式;(4)如图2,设直线PE交射线OD于R,交抛物线C于点Q,以RQ为一边,在RQ的右侧作矩形RQFG,其中RG=,直接写出矩形RQFG与等腰直角三角形OMN重叠部分为轴对称图形时m的取值范围.
现场学习:我们知道,若锐角α的三角函数值为sinα= m,则可通过计算器得到角α的大小,这时我们用arc sin m来表示α,记作:α="arc" sin m;若cos α = m,则记α=" arc" cos m;若tan α= m,则记α=" arc" tan m.解决问题:如图,已知正方形ABCD,点E是边AB上一动点,点F在AB边或其延长线上,点G在边AD上.连结ED,FG,交点为H.(1)如图1,若AE=BF=GD,请直接写出∠EHF= °;(2)如图2,若EF=CD,GD=AE,设∠EHF=α.请判断当点E在AB上运动时, ∠EHF的大小是否发生变化?若发生变化,请说明理由;若不发生变化,请求出α.