请阅读下面的材料:计算:解法一:原式== =解法二:原式= =解法三:原式的倒数为(==-10, 故原式=(1)上述得出的结果不同,肯定有错误的解法,你认为解法 是错误的.(2)请你用你认为简捷的解法计算:.
同学们,我们曾经研究过n×n的正方形网格,得到了网格中正方形的总数的表达式为.但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道时,我们可以这样做:(1)观察并猜想:=(1+0)×1+(1+1)×2=l+0×1+2+1×2=(1+2)+(0×1+1×2)=(1+0)×1+(1+1)×2+(l+2)×3=1+0×1+2+1×2+3+2×3=(1+2+3)+(0×1+1×2+2×3)=(1+0)×1+(1+1)×2+(l+2)×3+ ___________="1+0×1+2+1×2+3+2×3+" ___________=(1+2+3+4)+(___________)…(2)归纳结论:=(1+0)×1+(1+1)×2+(1+2)×3+…[1+(n-l)]n=1+0×1+2+1×2+3+2×3+…+n+(n-1)×n=(___________)+[ ___________]=" ___________+" ___________=×___________(3 )实践应用:通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是_________。
如图,正比例函数与反比例函数相交于A、B点.已知点A的坐标为A(4,n),BD⊥x轴于点D,且.过点A的一次函数与反比例函数的图象交于另一点C,与x轴交于点E(5,0).(1)求正比例函数、反比例函数和一次函数的解析式;(2)结合图象,求出当时的取值范围.
放风筝是大家喜爱的一种运动.星期天的上午小明在大洲广场上放风筝.如图他在A处时不小心让风筝挂在了一棵树的树梢上,风筝固定在了D处.此时风筝线AD与水平线的夹角为30°.为了便于观察.小明迅速向前边移动边收线到达了离A处7米的B处,此时风筝线BD与水平线的夹角为45°.已知点A、B、C在冋一条直线上,∠ACD=90°.请你求出小明此吋所收回的风筝线的长度是多少米?(本题中风筝线均视为线段,≈1.414,≈1.732.最后结果精确到1米)
小英和小明姐弟二人准备一起去观看端午节龙舟赛.但因家中临时有事,必须留下一人在家,于是姐弟二人采用游戏的方式来确定谁去看龙舟赛.游戏规则是:在不透明的口袋中分别放入2个白色和1个黄色的乒乓球,它们除颜色外其余都相同.游戏时先由小英从口袋中任意摸出1个乒乓球记下颜色后放回并摇匀,再由小明从口袋中摸出1个乒乓球,记下颜色.如果姐弟二人摸到的乒乓球颜色相同.则小英赢,否则小明赢.(1)请用树状图或列表的方法表示游戏中所有可能出现的结果.(2)这个游戏对游戏双方公平吗?请说明理由.
如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.