(本小题满分12分)已知数列{an}满足an=2an-1+2n+1(n∈N,n>1),a3=27,数列{bn}满足bn=(an+t).(1)若数列{bn}为等差数列,求bn;(2)在(1)的条件下,求数列{an}的前n项和Sn.
(本题12分)某班从4名男同学和2名女同学中任选3人参加全校举行的“八荣八耻”教育演讲赛。如果设随机变量表示所选3人中女同学的人数. (1)若,求共有不同选法的种数; (2)求的分布列和数学期望; (3)求“”的概率。
设函数,. (1)当时,求与函数图象相切且与直线平行的直线方程 (2)求函数的单调区间 (3)是否存在正实数,使对一切正实数都成立?若存在,求出的取值范围;若不存在,请说明理由.
已知函数的定义域为,对任意实数,都有成立,且当时,有,试判断函数的奇偶性和单调性,并证明你的结论
记函数f(x)=的定义域为A,g(x)=lg的定义域为B (1)求A; (2)若BA,求实数a的取值范围.
设函数,其中 (1)求的单调增区间 (2)对任意的正整数,证明: