(本小题满分10分)选修4-4:坐标系与参数方程已知曲线: (为参数),:(为参数).(Ⅰ)化,的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若上的点对应的参数为,为上的动点,求中点到直线 (为参数)距离的最小值.
(本小题满分13分) 某港口要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口的O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇. (I)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少? (II)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.
(本小题满分13分) 如图,在三棱锥中,侧面 与侧面均为等边三角形,,为中点. (Ⅰ)证明:平面; (Ⅱ)求二面角的余弦值.
(本题13分)已知函数 (1)判断函数的奇偶性; (2)若在区间是增函数,求实数的取值范围。
(本题13分)记关于的不等式的解集为,不等式的解集为. (1)若,求; (2)若,求正数的取值范围.
(本小题满分14分) 已知在[-1,0]和[0,2]上有相反的单调性. (Ⅰ)求c的值; (Ⅱ)若的图象上在两点、处的切线都与y轴垂直,且函数f(x)在区间[m,n]上存在零点,求实数b的取值范围; (Ⅲ)若函数f(x)在[0,2]和[4,5]上有相反的单调性,在f(x)的图象上是否存在一点M,使得f(x)在点M的切线斜率为2b?若存在,求出M点坐标;若不存在,请说明理由.