如图1,是直角△斜边上的高,沿把△的两部分折成直二面角(如图2),于.(Ⅰ)证明:;(Ⅱ)设,与平面所成的角为,二面角的大小为,试用表示;(Ⅲ)设,为的中点,在线段上是否存在一点,使得∥平面? 若存在,求的值;若不存在,请说明理由.
定义在上的函数对任意都有(为常数). (1)判断为何值时为奇函数,并证明; (2)设,是上的增函数,且,若不等式对任意恒成立,求实数的取值范围.
如图,四棱锥中,侧面是等边三角形,在底面等腰梯形中,,,,,为的中点,为的中点,. (1)求证:平面平面; (2)求证:平面.
某数学老师对本校2013届高三学生某次联考的数学成绩进行分析,按1:50进行分层抽样抽取的20名学生的成绩进行分析,分数用茎叶图记录如图所示(部分数据丢失),得到频率分布表如下: (1)求表中的值及分数在范围内的学生数,并估计这次考试全校学生数学成绩及格率(分数在范围为及格); (2)从大于等于110分的学生中随机选2名学生得分,求2名学生的平均得分大于等于130分的概率.
已知二次函数与两坐标轴分别交于不同的三点A、B、C. (1)求实数t的取值范围; (2)当时,求经过A、B、C三点的圆F的方程; (3)过原点作两条相互垂直的直线分别交圆F于M、N、P、Q四点,求四边形的面积的最大值。
在数列中,已知,. (1)求、并判断能否为等差或等比数列; (2)令,求证:为等比数列; (3)求数列的前n项和.