已知函数:(Ⅰ)证明:f(x)+2+f(2a-x)=0对定义域内的所有x都成立.(Ⅱ)当f(x)的定义域为[a+,a+1]时,求证:f(x)的值域为[-3,-2];(Ⅲ)设函数g(x)=x2+|(x-a)f(x)| ,求g(x) 的最小值 .
在区间[0,1]上给定曲线y=x2,试在此区间内确定点t的值,使图中阴影部分的面积S1与S2之和最小.
如图所示,抛物线y=4-x2与直线y=3x的两交点为A、B,点P在抛物线上从A向B运动. (1)求使△PAB的面积最大的P点的坐标(a,b); (2)证明由抛物线与线段AB围成的图形,被直线x=a分为面积相等的两部分.
设函数f(x)=x3+ax2+bx在点x=1处有极值-2. (1)求常数a,b的值; (2)求曲线y=f(x)与x轴所围成的图形的面积.
证明:把质量为m(单位:kg)的物体从地球的表面升高h(单位:m)处所做的功W=G·,其中G是地球引力常数,M是地球的质量,k是地球的半径.
求抛物线y2=x与直线x-2y-3=0所围成的平面图形的面积S.