评委会把同学们上交的作品的件数按5天一组分组统计,绘制了频率分布直方图,如图所示,已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为 12 ,请解答下列问题: (1)本次活动共有多少件作品参加评比? (2)哪组上交的作品量最多?有多少件? (3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组的获奖率高?
0 1 6 11 16 21 26 31
小王经营一家面包店,每天从生产商处订购一种品牌现烤面包出售.已知每卖出一个现烤面包可获利10元,若当天卖不完,则未卖出的现烤面包因过期每个亏损5元.经统计,得到在某月(30天)中,小王每天售出的现烤面包个数及天数如下表:
试依据以频率估计概率的统计思想,解答下列问题: (Ⅰ)计算小王某天售出该现烤面包超过13个的概率; (Ⅱ)若在今后的连续5天中,售出该现烤面包超过13个的天数大于3天,则小王决定增加订购量. 试求小王增加订购量的概率. (Ⅲ)若小王每天订购14个该现烤面包,求其一天出售该现烤面包所获利润的分布列和数学期望.
已知,函数的最小正周期为. (Ⅰ)试求的值; (Ⅱ)在图中作出函数在区间上的图象,并根据图象写出其在区间上的单调递减区间.
已知函数 (1)当时,讨论函数的单调性: (2)若函数的图像上存在不同两点,设线段的中点为,使得在点处的切线与直线平行或重合,则说函数是“中值平衡函数”,切线叫做函数的“中值平衡切线”。试判断函数是否是“中值平衡函数”?若是,判断函数的“中值平衡切线”的条数;若不是,说明理由.
已知椭圆C:的离心率等于,点P在椭圆上。 (1)求椭圆的方程; (2)设椭圆的左右顶点分别为,过点的动直线与椭圆相交于两点,是否存在定直线:,使得与的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由.
如图已知:菱形所在平面与直角梯形所在平面互相垂直,,点分别是线段的中点. (1)求证:平面平面; (2)点在直线上,且//平面,求平面与平面所成角的余弦值。