评委会把同学们上交的作品的件数按5天一组分组统计,绘制了频率分布直方图,如图所示,已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为 12 ,请解答下列问题: (1)本次活动共有多少件作品参加评比? (2)哪组上交的作品量最多?有多少件? (3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组的获奖率高?
0 1 6 11 16 21 26 31
二次函数f(x)=ax2+x+1(a>0)的图象与x轴的两个不同的交点的横坐标分别为x1、x2。 (1)证明:(1+x1)(1+x2)=1; (2)证明:x1<-1,x2<-1; (3)若函数y=xf(x)在区间(-,-4)上单调递增,试求a的取值范围。
已知0<a<1,0<b<1,0<c<1。求证:(1-a)b,(1-b)c,(1-c)a中至少有一个不大于。
若a、b、c均为正数,求证:。
如图,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r,计划将此钢板割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S。 (1)求面积S以x为自变量的函数式,并写出其定义域; (2)求面积S的最大值。
设f(n)=1+,当n≥2,nN*时,用数学归纳法证明:n+f(1)+f(2)+…+f(n-1)=nf(n)。