若数列前n项和可表示为,则是否可能成为等比数列?若可能,求出a值;若不可能,说明理由.
某高级中学共有学生2000名,各年级男、女生人数如下表:
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.(Ⅰ)求x的值;(Ⅱ)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少名?
(满分12分)设命题P:关于x的不等式的解集为;命题Q:的定义域为R.如果P或Q为真,P且Q为假,求的取值范围.
本题有(1)、(2)、(3)三个选考题,每题7份,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.选修4系列(本小题满分14分)(1)(本小题满分7分)选修4-2:矩阵与变换设是把坐标平面上的点的横坐标伸长到倍,纵坐标伸长到倍的伸压变换.(Ⅰ)求矩阵的特征值及相应的特征向量;(Ⅱ)求逆矩阵以及椭圆在的作用下的新曲线的方程.(2)(本小题满分7分)选修4-4:坐标系与参数方程直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的极坐标方程,曲线C的参数方程为为参数),求曲线C截直线l所得的弦长(3)(本小题满分7分)选修4—5:不等式选讲已知,且、、是正数,求证:.
(本小题满分14分)已知函数(1)求f(x)在[0,1]上的极值;(2)若对任意成立,求实数a的取值范围;(3)若关于x的方程在[0,2]上恰有两个不同的实根,求实数b的取值范围.
(本小题满分13分)过椭圆内一点M(1,1)的弦AB(1)若点M恰为弦AB的中点,求直线AB的方程; (2)求过点M的弦的中点的轨迹方程。