(本小题满分12分)设是公比不为1的等比数列,其前项和为,且成等差数列。(1)求数列的公比;(2)证明:对任意成等差数列
如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,(Ⅰ)求证:FH∥平面EDB;(Ⅱ)求证:AC⊥平面EDB; (Ⅲ)求四面体B—DEF的体积
已知是的三个内角,向量,且.(1)求角;(2)若,求
设、是函数的两个极值点.(1)若,求函数的解析式;(2)若,求的最大值.(3)若,且,,求证:.
如图,已知椭圆的上顶点为,右焦点为,直线与圆相切.(Ⅰ)求椭圆的方程;(Ⅱ)若不过点的动直线与椭圆相交于、两点,且求证:直线过定点,并求出该定点的坐标.
如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.(1)求证:AB1⊥面A1BD;(2)求二面角A-A1D-B的正弦值;