(本小题满分13分)设数列是首项为,公差为的等差数列,且是等比数列的前三项.(1)求的通项公式;(2)求数列的前项和.
(本小题满分12分)已知条件p: 条件q: 若的充分但不必要条件,求实数的取值范围.
(本小题满分12分)本地一公司计划2011年在省、市两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,省、市电视台的广告收费标准分别为元/分钟和200元/分钟,规定省、市两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在省、市两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
(本小题满分12分)已知向量且A、B、C分别为△ABC的三边a、b、c所对的角.(1)求角C的大小;(2)若,求c边的长.
(本小题满分12分)已知的图象经过点,且在处的切线方程是(1)求的解析式;(2)点是直线上的动点,自点作函数的图象的两条切线、(点为切点),求证直线经过一个定点,并求出定点的坐标。
(本小题满分12分)已知椭圆的离心率为,点是椭圆上的一点,且点到椭圆的两焦点的距离之和为4,(1)求椭圆的方程;(2)过点作直线与椭圆交于两点,是坐标原点,设,是否存在这样的直线,使四边形的对角线长相等?若存在,求出的方程,若不存在,说明理由。