(本小题满分12分)已知椭圆的离心率为,点是椭圆上的一点,且点到椭圆的两焦点的距离之和为4,(1)求椭圆的方程;(2)过点作直线与椭圆交于两点,是坐标原点,设,是否存在这样的直线,使四边形的对角线长相等?若存在,求出的方程,若不存在,说明理由。
在对数函数y=log2x的图象上(如图),有A、B、C三点,它们的横坐标依次为a、a+1、a+2,其中a≥1,求△ABC面积的最大值.
已知函数f(x)=loga(a-ax)且a>1,(1)求函数的定义域和值域;(2)讨论f(x)在其定义域上的单调性;(3)证明函数图象关于y=x对称.
设0<x<1,a>0且a≠1,试比较|loga(1-x)|与|loga(1+x)|的大小.
已知f(x)=x2+(lga+2)x+lgb,f(-1)=-2,当x∈R时f(x)≥2x恒成立,求实数a的值,并求此时f(x)的最小值?
.已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为R,求实数a的取值范围.