已知{an}是正数组成的数列,a1=1,且点(,an+1)( n ∈N*)在函数y=x2+1的图象上.(1)求数列{an}的通项公式;(2)若数列 满足b1=1,,求证:.
已知直线(为参数)和圆; (1)时,证明直线与圆总相交;(2)直线被圆截得弦长最短,求此弦长并求此时的值.
在中,.(1)求;(2)若,求的最大值,并求此时角的大小.
已知函数对任意实数,恒有,且当时,,又.(1)判断的奇偶性;(2)求证:是上的减函数;(3)求在区间上的值域;(4)若对任意的,不等式恒成立,求的取值范围.
已知一四棱锥的三视图如下,是侧棱上的动点.(Ⅰ)求四棱锥的体积;(Ⅱ)是否不论点在何位置,都有?证明你的结论.
设集合,.(1)若,求实数的值;(2)若,求实数的取值范围.