已知{an}是正数组成的数列,a1=1,且点(,an+1)( n ∈N*)在函数y=x2+1的图象上.(1)求数列{an}的通项公式;(2)若数列 满足b1=1,,求证:.
已知函数,,其中. (I)设函数.若在区间上不单调,求的取值范围;(II)设函数 是否存在,对任意给定的非零实数,存在惟一的非零实数(),使得成立?若存在,求的值;若不存在,请说明理由.
设数列(1)求数列的通项公式; (2)设,求数列(3)设,,记,设数列的前项和为,求证:对任意正整数都有;
如图,在三棱锥中,底面,点,分别在棱上,且 (Ⅰ)求证:平面;(Ⅱ)当为的中点时,求与平面所成角的正弦值;(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.
有两枚大小相同、质地均匀的正四面体玩具,每个玩具的各个面上分别写着数字1,2,3,5。同时投掷这两枚玩具一次,记为两个朝下的面上的数字之和。(1)求事件“m不小于6”的概率; (2)“m为奇数”的概率和“m为偶数”的概率是不是相等?证明你作出的结论。
设的内角所对的边分别为且.(1)求角的大小;(2)若,求的周长的取值范围.