设数列(1)求数列的通项公式; (2)设,求数列(3)设,,记,设数列的前项和为,求证:对任意正整数都有;
(本小题满分12分)已知递增等比数列满足,,数列满足.(Ⅰ)求数列的通项公式;(Ⅱ)设数列的通项公式,求数列的前项和
(本题满分12分)设向量,其中,函数.(Ⅰ) 求的最小正周期;(Ⅱ) 若,其中,求的值.
(本小题满分12分) 已知集合,,(1)在区间上任取一个实数,求“”的概率;(2)设为有序实数对,其中是从集合中任取的一个整数,是从集合中任取的一个整数,求“”的概率.
(本小题满分7分)选修4-5:不等式选讲已知实数满足且的最大值是7,求的值.
(本小题满分7分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是参数),点是曲线上的动点,点是直线上的动点,求||的最小值.