设数列(1)求数列的通项公式; (2)设,求数列(3)设,,记,设数列的前项和为,求证:对任意正整数都有;
已知椭圆C1的中心在坐标原点,两个焦点分别为F1(-2,0),F2(2,0),点A(2,3)在椭圆C1上,过点A的直线L与抛物线C2:x2=4y交于B,C两点,抛物线C2在点B,C处的切线分别为l1,l2,且l1与l2交于点P.(1)求椭圆C1的方程;(2)是否存在满足|PF1|+|PF2|=|AF1|+|AF2|的点P?若存在,指出这样的点P有几个(不必求出点P的坐标);若不存在,说明理由.
如图所示,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M在点N的右侧),且|MN|=3,已知椭圆D:+=1(a>b>0)的焦距等于2|ON|,且过点(,).(1)求圆C和椭圆D的方程;(2)若过点M斜率不为零的直线l与椭圆D交于A、B两点,求证:直线NA与直线NB的倾斜角互补.
已知椭圆E:+=1(a>b>0),以抛物线y2=8x的焦点为顶点,且离心率为.(1)求椭圆E的方程;(2)若F为椭圆E的左焦点,O为坐标原点,直线l:y=kx+m与椭圆E相交于A、B两点,与直线x=-4相交于Q点,P是椭圆E上一点且满足=+,证明·为定值,并求出该值.
如图所示,已知抛物线E:y2=x与圆M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四个点.(1)求r的取值范围;(2)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.
已知椭圆C的左、右焦点坐标分别是(-,0),(,0),离心率是.直线y=t与椭圆C交于不同的两点M,N,以线段MN为直径作圆P,圆心为P.(1)求椭圆C的方程;(2)若圆P与x轴相切,求圆心P的坐标;(3)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值.