如图,四棱锥P-ABCD中,底面四边形ABCD是正方形,侧面PDC是边长为a的正三角形,且平面PDC⊥平面ABCD,E为PC的中点.(1)求异面直线PA与DE所成的角的余弦值.(2)求点D到平面PAB的距离.
求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点(-3,2)(2)焦点在直线上
已知中心在原点的双曲线C的右焦点为,右顶点为. (Ⅰ)求双曲线C的方程 (Ⅱ)若直线与双曲线恒有两个不同的交点A和B且(其中为原点),求k的取值范围
证明:以抛物线焦点弦为直径的圆与抛物线的准线相切
已知双曲线C:的两个焦点为,点P是双曲线C上的一点,,且. (1)求双曲线的离心率; (2)过点P作直线分别与双曲线的两渐近线相交于两点,若,,求双曲线C的方程.
已知是双曲线的左,右焦点,点是双曲线右支上的一个动点,且的最小值为,双曲线的一条渐近线方程为. 求双曲线的方程;