(本小题满分10分)选修4—4:坐标系与参数方程在极坐标系中曲线的极坐标方程为,点. 以极点O为原点,以极轴为x轴正半轴建立直角坐标系.斜率为的直线l过点M,且与曲线C交于A,B两点.(Ⅰ)求出曲线C的直角坐标方程和直线l的参数方程;(Ⅱ)求点M到A,B两点的距离之积.
某初级中学共有学生2000名,各年级男、女生人数如下表:
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19。 (I)求的值; (II)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (III)已知,求初三年级中女生比男生多的概率。
设函数 (I)写出函数的最小正周期及单调递减区间; (II)当时,函数的最大值与最小值的和为,解不等式.
已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,右焦点到直线x+y+1=0的距离为. (1)求椭圆的方程; (2)直线过点P(0,2)且与椭圆相交于A,B的点,当△AOB面积取得最大值时,求直线的方程.
如图,正四棱柱中,底面边长为2,侧棱长为3,E为BC的中点,F、G分别为、上的点,且CF=2GD=2.求: (1)到面EFG的距离; (2)DA与面EFG所成的角的正弦值; (3)在直线上是否存在点P,使得DP//面EFG?,若存在,找出点P的位置,若不存在,试说明理由。
已知函数,其图像在点处的切线为. (1)求、直线及两坐标轴围成的图形绕轴旋转一周所得几何体的体积; (2)求、直线及轴围成图形的面积.